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Multi-Task Performance in Computer-Aided Systems:
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Computer-aided system or automation technology is a pervasive phenomenon,
which confronts inexorably human issues of cognitive functioning.  Automation
envisages the thought of electronic replacement of human operator.  It plays a
critical role in situations when a small number of operators must control and
supervise a very complex set of remote processes.  The present review examines
the notion of automated complacency and mental workload along with the factors,
which promotes or confines the effective usage of automation by human operators.
The concomitant effects of extended training, automation reliability and feedback
on the detection of automation failures and perceived workload in multitask
ambience have been studied and demonstrated in this paper.  A long tenure of
training administered to the subjects indicated no benefit in terms of monitoring
efficiency and mental workload in the multitask ambience as well as results also
deciphered that varying feedback types failed to diminish mental workload, causing
detection inefficiency.  The underlying mechanism of adaptive automation is also
considered within the framework of psychophysiological (HRV, pulse rate, EEG)
evidences.
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Computer-aided system or automation in
crude terms refers to those circumstances
when a machine or a computer performs a
task that is otherwise performed by the human
operator.  Automation may be defined as
automatic handling of parts between
progressive production processes.
Automation also signifies, as ‘having
equipment perform a function that could be
performed by the pilot manually’ (Kantowitz
& Sorkin, 1983).  It can be further, thought of
as the ‘process of allocating the activities to a
machine or system to perform’ (Parsons,
1985).  Moreover, Parasuraman and Riley
(1997) defined automation as the execution
of functions by machine (computer), which
was previously carried out by a human.
However, it is noteworthy that the more

sophisticated it gets, the less people embrace
it.  Also, it is silent and opaque having no
intelligence of its own as such.  Now it is high
time to realize that the motive of today’s
human factors or cognitive research is to
develop such systems, which provide the
operator to work freely, thereby still
maintaining the proficiency and support of
automation.  Henceforth, it is sagacious to
consider uniform application of automation to
every unit of the system need not be
necessary and human interference at some
extent might become inevitable.
Automation levels

The stages of automation can be
encapsulated from the human information
processing units that automation aims to
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replace or augment and the amount of
cognitive or motor work that automation
replaces which accounts for the level of
automation. Parasuraman, Sheridan and
Wickens (2000) defined four stages with
different levels within each stage, for example,
information acquisition, selection and filtering,
information integration, action selection, and
choice and control and action execution. It is
evident that the levels of automation signifies
the amount of “work” done by the automated
component and thereby relieving the workload
from humans.  Parasuraman et al., (2000)

suggested that automation could be applied
to four broad classes of function: (a)
information gathering (or acquisition); (b)
information analysis; (c) decision and action
selection; and (d) action implementation.
Automation in each functional dimension can
vary across several levels, i.e., from lower to
higher levels.  However, conventionally
automation is based on a policy of allocation
of function in which either human or machine
has full control of a task (Fitt’s, 1951).  Fitt’s
also identified some of the superior attributes
of man and machine in terms of power and
control (see Table 1).

Table 1:The Fitt’s List
Men (human) are better at:

1. Detecting small amounts of visual,
    auditory or chemical energy
2. Perceiving patterns of light or sound
3. Improvising and using flexible
    procedures
4. Storing information for long periods of
    time, and recalling appropriate parts
5. Reasoning inductively6. Exercising
    judgment

Machines are better at:
1. Responding quickly to control

signals
2. Applying great force smoothly

and precisely
3. Storing information briefly,

erasing it completely
4. Reasoning deductively
5. Doing many complex operations

 at once

Benefits of automation
The aim of automated devices in aviation

or any other domain speaks out its need to
cater some of the multifaceted tasks, which
is otherwise next to impossible job to
accomplish.  Also automation fosters for
feasibility of technology and its low inputs from
the architects of the technological
advancements.  Incorporation of automation
in aviation industry made flying faster, safer
and more economical.  Automation is also
considered to be more efficient, reliable and
accurate than the human operator and it has
been used at the highest possible level (Singh,
Molloy, Parasuraman, & Westerman, 1994).
Problems of monitoring performance
with computer-aided system

The benefits of automation have been
achieved on the pretext of number of costs,

for example, automation-induced
complacency, mental workload, the loss of
situation awareness, degradation of
monitoring abilities and manual skills
(Endsley, 1998; Singh, Parasuraman, Molloy,
Deaton, & Mouloua, 1998; Parasuraman,
Molloy, & Singh, 1993; Weiner, 1988).
Automation-induced complacency

Over trust of automation is sometimes
referred to as complacency, which occurs
when people trust the automation more than
what is warranted and can result in very
severe negative consequences, if the
automation is less than fully reliable
(Parasuraman, et al., 1993; Parasuraman et
al., 1997).  Weiner (1981) defined
complacency as “a psychological state
characterized by a low index of suspicion”
(p.117).  Parasuraman, et al., (1993) argued
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that the element of workload is necessary for
the development of automation-induced
complacency.  Perceiving the device to be of
perfect reliability, a natural tendency would
be for the operator to cease monitoring its
operation or, to at least monitor it far less
vigilantly than is appropriate (Bainbridge,
1983; Moray, 2003).  This situation
exacerbated by the fact that people make
pretty poor monitors in the first place, when
they are doing nothing but monitoring
(Parasuraman, 1986; Warm, Dember, &
Honcock, 1996).

Singh et al., (1993) suggested that
determining the people’s attitude toward
automation might reveal the potential for
complacent behavior. Regarding assessment
of everyday automated devices like ATM’s,
automobile cruise controls, and laser
technology, they developed a 20 item CPRS
(Complacency potential rating scale) with very
high internal consistency (r = 0.90) and test-
retest reliability (r = 0.87) which established
the major factors accounting for “complacent
behaviors” viz. person’s trust, reliability and
confidence in automation.  They further
enunciated their findings by stating that
complacent behavior is observable only when
complacency potential co-exists with other
conditions such as (a) pilot inexperience with
equipment; (b) high workload brought about
by poor weather, heavy traffic, or equipment
trouble; (c) fatigue due to poor sleep or long
flights; and (d) poor communication between
ground and crew or among crew members.
Thus the combination of the crew’s attitude
toward automation for instance overconfident
and a particular situation like high workload
might result in automation-induced
complacency.  Parasuraman et al., (1993)
further proposed that complacency was
different from boredom or low workload.

Parasuraman, et al., (1993) conducted
two experiments pertaining to the human
operator’s detection of automation failure and
for assessing the effect of variations in the

reliability of an automated monitoring system.
The first experiment involved 24 non-pilots,
who performed a flight simulation task based
on the modified version of the multi-attribute
task battery (Comstock & Arnegard, 1992).
The task comprised of engine system
monitoring, two dimensional tracking and fuel
resource management tasks (see Figure 1),
and for four 30 min sessions, each consisted
of 3 continuous 10 minute blocks, under
constant and variable automation reliability
conditions.  Specifically, automation was
programmed for system monitoring sub-task,
while tracking and fuel resource management
tasks were always manually controlled.
Fig1: Revised version of multi-attribute
task battery

The percentage of malfunctions detected
by the automation routine was referred to as
automation reliability and it was varied
between subjects.  For the constant reliability
group, automation reliability remained
constant from block to block at a high level
(87.5%; 14 out of 16 malfunctions detected)
for half of the subjects and at a low level
(56.25%; 9 out of 16 malfunctions detected)
for the other halves.  Also reliability alternated
every 10-minute from low to high for half of
the subjects and from high to low for the
remaining subject’s pertaining to the variable

reliability group.  Results detected that poorer
monitoring efficiency occurred under the
constant automation reliability condition
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compared to the variable reliability condition.
In the second experiment, 16 subjects
performed only the system-monitoring task in
which they showed a high level of monitoring
efficiency in a single task situation.  Therefore,
it was evidently the first empirical evidence of
the performance consequences of
automation-induced complacency and was
observed in multitask ambience only.  In the
follow-up study, Singh, Parasuraman, Deaton
and Molloy (1993), examined inefficiency in
monitoring automated tasks and concluded
that pilots operationally experienced similar
automation induced-complacency in
monitoring automation failures (see Fig.2).
Figure 2: Monitoring efficiency of pilots
and non-pilots on flight simulation task

Earlier studies established that monitoring
an automated task located in the periphery
could lead to automation-induced
complacency.  Singh, Molloy, Parasuraman
and Westerman (1994), experimentally
established that location had no effect on
“complacency” and inefficiency in monitoring
automation was not necessarily due to
reduced eye fixations to display location in the
periphery.  Thus, automation-induced
monitoring inefficiency was noted, not due to
visual scanning features but rather an
attentional failure.  Further, Singh, Molloy and
Parasuraman (1997), propounded that
automation-induced complacency is observed
in static automation reliability rather than
variable one.  Thereby, the outcome of such

results substantiated that the operator
becomes complacent while monitoring
automation malfunction under static
automation over a longer duration of time.

Singh, Sharma and Parasuraman
(2000a) considered the amount of training
prior to monitoring the automated task and
observed that monitoring efficiency
significantly deteriorated during constant
(static) automation as compared to variable
over time periods.  In the follow up study,
Singh, Sharma and Parasuraman (2000b)
investigated the effects of extended training
on monitoring performance by varying the
amount of manual training (30 min of short
and 60 min of long manual training) to the
automated blocks.  Manual training signifies
that the participants performed the three
simultaneous tasks viz., System Monitoring,
Tracking and Fuel Resource Management
manually.  However, their study revealed that
an increased amount of manual training failed
to reduce automation induced complacency.
Moreover, complacency was significantly
higher under constant reliability than it was
under variable reliability (see Figure 3 & 4).
Thus, the full-bodied existence of automation-
induced complacency can be observed in a
dynamic ambience under static automation
reliability.
Figure 3: Automation-induced
complacency after 30-min manual
training
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Figure 4: Automation-induced
complacency after 60-min manual
training

Mental workload and monitoring
inefficiency

Mental workload pertains to information
processing load or resource demands
imposed by a task.  It has also been defined
as the “costs” of a human operator while
performing complex tasks. This cost may be
conceptualized as an undifferentiated capacity
or resource (Kahneman, 1973; Moray, 1967).
Introduction of automation aims at reducing
operator’s workload. Furthermore, the
reduced workload achieved by automation
could also pave the way for loss of situation
awareness, as the operator was not actively
involved in choosing the actions
recommended or executed by the automation.
According to Endsley and Kiris (1995),
suggested a correlation between situation
awareness and mental workload, as
automation level moves up the scale, both
workload and situation awareness tends to
slag down.

The assessment of mental workload may
be classified into three groups: behavioral,
psychophysiological and subjective judgment
(Desai, 1999). Braby, Harris and Muir (1993)
reported that high levels of workload could
lead to errors and system failures, while low
workload could lead to complacency.  The
rationale could be that automation reduces
the high demands at first place on the
operator, resulting in decrement of human
errors.  The findings further enunciated that

high automation often redistributed rather than
reducing the workload within the system (Lee
& Moray, 1992; Parasuraman & Mouloua,
1996; Singh & Parasuraman, 2001; Wiener,
1988).

It is reasoned that automation sometimes
poses high demand and that become difficult
to cope or manage, and which may require
more attentional resources.  Some of the
studies have looked into the effects of
automation and workload on monitoring/
tracking performance. The concomitant
effects of extended training (manual &
automated), automation reliability levels and
feedback types on the detection of automation
failures and perceived workload in multitask
ambience was assessed by I. L. Singh, A. P.
Singh, Dwivedi and A. L. Singh (2005).  The
three consecutive studies examined the
effects of extended automation training, static
automation reliability and performance
feedback on perceived mental workload and
automation-induced complacency. A
2(training) x 2(session) x 3(block) mixed
factorial design was used for the first
experiment in which training was treated as
between subject factors, while session and
block were treated as within subject factors.
The flight simulation task comprised system-
engine monitoring, compensatory tracking
and fuel resource management tasks.  The
correct, incorrect detection and RT were
recorded as the dependent performance
measures for the system monitoring task and
the RMS errors were recorded for the tracking
and the fuel management tasks.  Mean
detection performance showed higher hits rate
in long training than short training.  However,
mean difference on correct detection under
two training was not significant, which
revealed that the amount of manual training
given prior to the detection of automation
failures did not influence subjects monitoring
detection efficiency.  The main effects of
session and block showed significant
decrement in the detection of automation
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failures over sessions and across blocks.
Furthermore, long training indicated benefits
in terms of reduced workload than short
training.

In the successive study (second study),
they examined the effect of the increased
automation training and automation reliability
levels on system engine monitoring
performance and mental workload.
Automation training and automation reliability
levels were treated as between subject
factors.  Similar MAT battery and NASA-TLX
mental workload scale were used in this study.
The performance measures were the same
as recorded in the previous experiment.  Mean
monitoring performance showed no effect of
the amount of automation training.
Additionally, automation reliability levels
significantly affected detection performance.
Results indicated that all components of
workload i.e., mental, temporal, effort,
performance and frustration predicted
significant mean difference between pre- and
post workload indices, except physical
workload.  Thus, such outcomes propounded
that monitoring automated task under multiple
task condition significantly reduced temporal,
effort, frustration and mental workload from
pre- to post task session.

In continuation with above research
establishments, the effect of performance
feedback on perceived mental workload and
system-engine monitoring task performance
was observed in the subsequent third
experiment.  Correct detection performance
on automation failures of the system-
monitoring task revealed no feedback effect.
Moreover, the main effect of session and a
two-way interaction between sessions by
feedback showed significant effect on
monitoring performance, while remaining
interactions were observed to be not
significant.  Furthermore, mean effort
workload component showed significant
difference between pre- and post session at
successful feedback condition, which

revealed that subjects perceived significantly
low effort after getting successful performance
feedback, while on the other hand subjects
perceived significantly higher performance
workload from pre- to post session after
receiving failure feedback performance.  It is
noteworthy that none of the other workload
factors was found significant between pre- and
post sessions.  In sum, the results suggested
that feedback types failed to reduce mental
workload across sessions, causing
automation-induced complacency, thereby
establishing the fact that automation-induced
complacency is a robust phenomenon and
observable in multi-task ambience (for e.g.,
aircraft cockpits, nuclear stations and railway
track monitoring) while automation reliability
is very high and static.
Physiological correlates (HRV and EEG)
of mental workload

Evidently as task demands of air traffic
control or pilots and crewmember increases
beyond a threshold, operators might
experience a condition of “overload”; thereby
tasks cannot be accomplished in a fruitful
manner.  However, if a monitoring system can
be developed to accurately assess an
operator’s mental workload state, it could ease
the accomplishment of required tasks and
potentially save valuable property and lives.
A primary benefit for use of brain mappings
to infer mental workload is that
electroencephalogram (EEG) offers good
temporal resolution of cognitive activity with
resolution well under a minute and can be
used as one of the most direct, nonintrusive
measures of the central nervous system
(CNS).  Also the peripheral measures,
including eye blinks, heart rate, and respiration
can augment EEG features with additional
salient information.  In general, eye blink rates
decreases as visual demands increases,
heart rate increases with increased workload
demands while respiration inter-breadth
intervals decreases with increase in mental
demands.  Such an approach is praiseworthy
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because by identifying a set of salient
features, the “noise” in a classification model
can be reduced, thereby resulting in more
accurate general classification for external
validation of data.  At higher levels of
workload, the heart rate (inter beat interval)
tends to be more constant over time, whereas
at lower workload levels it waxes and wanes
at frequencies of around 0.1 Hz and those
driven by respiration rate (Tattersall, 1992).
Further, measures of visual scanning and
other physiological workload measures like
blink rate, pupil and diameter are also useful
in understanding the qualitative nature of
workload changes.

Psychophysiological recordings owe to
the experimental manipulations of biological
features for monitoring brain functioning.
Traditionally the idea envisages from the
arousal theory - the thought that the variability
in brain functioning occurs from states of deep
sleep through normal wakefulness to extreme
excitement.  It is observed that arousal may
be assessed through CNS measure (EEG)
and ANS (autonomic nervous system)
measures like increased skin conductance
and heart rate. ERP waves or components
are usually labeled in terms of their polarity
and the length of time that has expired since
the initiating event: P300 is a positive
component that occurs approximately 300 ms
after an event.  Experimental manipulation of
stimuli and cognitive demands show how the
components may be linked to particular types
of processing (Luck & Girelli, 1998).
Imperatively, there are physiological costs
associated with the performance of cognitively
demanding tasks.  However, it is improbable
that this “cost” arises only from the
physiological “cost”.
Hybrid technology(Adaptive automation)

Allocation of functions between human
and automation varies with time depending
on the human’s workload as well as the
current context. The risk of over-reliance in

automated systems is an indicator for gradual
decline in manual skills (Singh et al., 1993).
Without practice, people lose their ability to
react effectively when an emergency arises.
You have to keep humans in the loop, honing
their skills (Wickens, 1998).  That’s where
‘adaptive automation’ creeps in.  Adaptive
systems, in which function allocation is flexible
and responsive to task or operator demands,
are thought to be less susceptible to
automation-induced difficulties in monitoring
or situation awareness (Parasuraman et al.,
1990).  The proponents of adaptive systems
or the hybrid technology asserts that the
benefits of automation can be maximized and
the costs minimized, if tasks are allocated to
automated subsystems or to the pilot in an
adaptive, flexible manner rather than in an all
or none fashion (Rouse, 1988).

Mouloua, Parasuraman and Molloy
(1993) further enunciated the notion by
examining the effects of allocating the
systems monitoring task to the operator for a
brief period of time to subsequent monitoring
performance with automation.  Subjects
performed the MAT flight simulation task
under constant reliability (87.5%) through out
the sessions.  Two adaptive logics i.e., model
and performance was manipulated in this
study.  The model-based adaptive group was
allocated a single 10 min block of fully manual
performance on the system monitoring task
in the middle of the second session (i.e., on
block 5).  The performance based adaptive
group was allocated fully manual monitoring
in the middle of the second session but only if
the average performance during the first 40
min was below 55% (performance criterion).
Incase of both adaptive groups, the change
in allocation was signaled 30 s prior to the
change by a tone and by a visual message
appearing in the display window. Also,
following 10 min of manual performance in
block 5, a pre-warned re-allocation of the
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monitoring task to the automation routine was
administered.  Automation was implemented
for the rest of the session (block 6 through 9).
The results supported the prediction that
adaptive allocation of a task to the operator
would result in improved monitoring
performance of automation failures in
subsequent blocks.  The detection rate of
automation failures was not significantly
different for the three groups for the first 40
min (blocks 1-4) of automation.  The mean
detection rate was higher in the post allocation
than in the preallocation phase for both
adaptive groups (see Figure 5).  The
performance benefit was approximately the
same for both methods of function allocation,
21.8% for the model-based group and 21.4%
for the performance based.
 Figure 5: Effects of adaptive function
allocation on monitoring performance

Similarly, Singh, Parasuraman, Deaton
and Molloy (1993) extended previous study
of Mouloua et al., (1993) and examined that
whether multi-adaptive function allocation
would sustain performance benefits over
prolonged automation periods in U.S. pilots.
They used only model based adaptive function
allocation method.  The detection rate of
automation failures was averaged across two
manual allocation phases.  Monitoring
performance under automation or pre-
allocation was lower than during manual
allocation and post allocation phases.
However, the performance levels (system
malfunction detection) during manual

allocation phase did not differ significantly
from post allocation phase following the return
to automation (see Figure 6).  After assessing
the comparison of the means of the pre-
allocation and post-allocation phases, it was
propounded the detection rate of automation
failures was statistically significant and the
performance benefit (29%) sustained over a
longer automation period resulted from
repetitive function allocation.
Figure 6: Pilot performance with multi-
adaptive function allocation on
monitoring performance

Human-centered verses technology-
centered system

Automation has greatly improved safety,
comfort and job satisfaction in many
applications and is vindicated only when
performance is enhanced and cost is reduced.
Automation plays a critical role in
circumstances when a small number of
operators must control and supervise a
complex remote process.  Automation here
is not “optional”, it’s a necessity (Sheridan,
2002).  Ideally, the automation design should
focus on creating a human-automation
partnership by incorporating the principles of
human-centered automation (Billings, 1996).
The six human-centered automation features
that are believed to achieve the goal of
maximum harmony between human, system
and automation are as follows: (a) Keeping
the human informed; (b) Keeping the human
trained; (c) Keeping the operator in the loop;
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(d) Selection of appropriate stages & levels
incase of imperfect automation; (e) Making
the automation flexible & adaptive; and (f)
Maintaining a positive management
philosophy.

Evaluating automation totally in terms of
technological issues is not enough primarily
because there are many subtle changes in
human decisions, which cannot be placed
under technical umbrella.  Performance of
human’s specific to their cognitive abilities and
motor skills viz., speed and accuracy are
imperative to analyze.  It was believed that
the pilots as per instructions enlisted in the
help books would follow the products
designed by the adept designers.  However,
this adaptation has been much more difficult
than expected.  The human speed pertaining
to response stands out to be empirically
limited.  So these restrictions create a loophole
in perfection and performance regarding the
automated settings.  Further, accuracy is
another factor which accounts for perfection
in human performance of automated devices
or systems.  Due to cognitive limitations and
other job pressures (mental workload),
accuracy might be a tradeoff, which affects
the overall performance of the concerned
authority.  The cautions do not signify that
automation is a bad monitor.  As we have
seen, many of the safety-enhancing
possibilities are clearly evident.  But
automation must be carefully introduced within
the content of a human-centered philosophy.
And the promising approach is adaptive
automation in which sensors monitor the users
for signs of fatigue, distraction and other job
related tasks and adapt vehicle control,
information attainment and warning system
accordingly.

Conclusion
After the description of an interlinking set

of cognitive phenomena’s pertaining to
automation-induced complacency, mental
workload, attention and task control, it

necessitates viewing all these elements in
consonance with each other.  The
psychophysiological evidences augment such
imperative needs to comprehend these robust
phenomena of psychological and ergonomic
importance.  Additionally, it becomes
imperative to consider or ascertain the impact
of powerful but imperfect computer aided
systems or automation on pilot’s workload,
situation awareness and management of
multiple tasks.  The modern human factors
approach is based on the result of task
analysis and cognitive modeling, and the
essence looms over the final query of human
in command.  Further, research and
conceptual analyses are desirable to
approach these factors of implementing
effective human centered automaton too.  It
is simply true that performance has been
improved with automation, and that safety
measures have strengthened, even though
better safety is always desirable.
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